TIDY3D
LEARNING CENTER

Complete this course to earn 50 FlexCredits

Time step size and CFL condition in FDTD

By Weiliang Jin, Zongfu Yu and Shanhui Fan

The choice of time step size can have a strong impact on the behavior of FDTD algorithms. In this lecture, we provide a simple and intuitive argument on deriving an important condition on choosing time step size, known as the Courant–Friedrichs–Lewy (CFL) condition.

- Graphically illustrate how information propagates over 1D and 2D Yee grids, which aids an easy derivation of the speed of numerical dependency and the CFL condition.
- Introduce Courant number, and explain that CFL condition imposes an upper bound of time step size decided by the smallest grid size in the computational domain.
- Show that computational cost increases rapidly with spatial resolution under two considerations: spatially more grid points, and temporally finer time step size required by CFL condition.

Share On:
Additional information: This was updated in Sep 08, 2022